Altarelli-parisi equation in non-equilibrium QCD

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical Solution of Altarelli-Parisi Equations

We discuss numerical solution of Altarelli-Parisi equations in a Laguerre-polynomial method and in a brute-force method. In the Laguerre method, we get good accuracy by taking about twenty Laguerre polynomials in the flavor-nonsinglet case. Excellent evolution results are obtained in the singlet case by taking only ten Laguerre polynomials. The accuracy becomes slightly worse in the small and l...

متن کامل

Quantum statistics and Altarelli-Parisi evolution equations

The phenomenological evidence of quantum statistical effects in parton physics is here briefly summarized, and the recent good results obtained by parameterizing the parton distributions in terms of Fermi-Dirac and Bose-Einstein statistical functions are discussed. In this framework we study the modification of the scaling behaviour of parton distributions due to quantum statistical effects. In...

متن کامل

Complete solution of Altarelli - Parisi evolution equation in next - to - leading order and non - singlet structure function at low - x

We present complete solution of Altarelli-Parisi (AP) evolution equation in next-to-leading order (NLO) and obtain t-evolution of non-singlet structure function at low-x. Results are compared with HERA low-x and low-Q 2 data and also with those of complete solution in leading oder (LO) of AP evolution equation.

متن کامل

FORTRAN program for a numerical solution of the nonsinglet Altarelli - Parisi equation

We investigate a numerical solution of the flavor-nonsinglet Altarelli-Parisi equation with next-to-leading-order α s corrections by using Laguerre polynomials. Expanding a structure function (or a quark distribution) and a splitting function by the Laguerre polynomials, we reduce an integrodifferential equation to a summation of finite number of Laguerre coefficients. We provide a FORTRAN prog...

متن کامل

Nonperturbative contribution to the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi and Gribov-Levin-Ryskin equation

By studying the nonperturbative contribution to the Dokshitzer-Gribov-LipatovAltarelli-Parisi and Gribov-Levin-Ryskin equation, it is found that (i) the nonperturbative contribution suppresses the evolution rate at the low Q2, small-x region; (ii) the nonperturbative contribution weakens the shadowing effect. The method in this paper suggests a smooth transition from the low Q2 (”soft” ), where...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Physics of Particles and Nuclei

سال: 2012

ISSN: 1063-7796,1531-8559

DOI: 10.1134/s106377961206007x